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INTRODUCTION

The leather, footwear, and related supply 
chain make a significant contribution to employ-
ment rates. In Peru, this industry is disseminated 
across three regions: Lima, Arequipa, and Trujillo. 
Despite the continuous influx of substantial vol-
umes of imported footwear for over two decades, 
resulting in decreased production levels, numer-
ous micro, small, and even some large tanneries 
still continue to produce leather. The survival of 
companies within this industry is related to their 
ability to attain certain levels of productivity and 
competitiveness. Nevertheless, there are critical 
and constraining factors that require attention, 
notably regarding the handling of their effluents 
and solid waste, which are characterized by ele-
vated levels of pollutants. Although the country’s 

environmental regulations have established 
benchmarks for these effluents, their effective en-
forcement has been impeded by the intricate na-
ture of production processes that involve diverse 
chemical substances discharged as residues into 
the effluents. Subsequently, these residues are 
stored and managed as blends. Among the primary 
pollutants generated, one can identify biochemical 
oxygen demand (BOD), chemical oxygen demand 
(COD), total suspended solids (TSS), sulfides, 
ammonia, chlorides, and those originating from 
the tanning agents employed. A notable example 
among these agents is basic chromium sulfate, a 
globally employed tanning agent due to the physi-
cal and mechanical attributes it provides to leath-
er. Consequently, the presence of chromium in ef-
fluents has prompted numerous studies to explore 
alternative removal methods for this pollutant.
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Electrocoagulation has demonstrated effi-
ciency in removing contaminants, including COD, 
BOD, TSS, and heavy metals, such as chromi-
um (Kanagaraj et al., 2014; De la Luz-Pedro et 
al., 2019; Aguilar et al., 2019; Liu et al., 2018). 
Nevertheless, there is evidence indicating that its 
combination with a magnetic field (Ghernaout et 
al., 2009, Ibanez et al., 2012) or advanced ozone-
based oxidation (Barzegar et al., 2019, Bilińska et 
al., 2019) amplifies its efficiency, even resulting 
in reduced energy consumption (Liu et al., 2018). 
Several studies have assessed the combination of 
at least two of the processes described in this study 
(electrocoagulation (EC), magnetic field, and ozo-
nation) for the treatment of tannery wastewater as 
well as different types of effluents. One of these 
studies was published by Ibanez et al. (2012), 
wherein a combined electrochemical-magnetic 
approach was employed to demonstrate that the 
presence of a magnetic field enhances the precipi-
tation of suspended coagulants, resulting in a 30% 
increase in turbidity removal. In addition, Irki et 
al. (2017) applied a magnetic field to enhance the 
electrocoagulation process for decolorizing methyl 
orange. Through their experimental work, they ob-
served that the removal of methyl orange increased 
from 74%, reported using only electrocoagulation 
to 95% after the magnetic field was introduced. 
Likewise, Hernández-Ortega et al. (2010) reported 
that coupling EC with ozone proves effective as a 
comprehensive treatment for discharging industri-
al effluents into municipal sewers. They achieved 
over 90% and 60% reduction in the color as well 
as turbidity of wastewater and COD, respectively. 
Furthermore, Asaithambi et al. (2016) documented 
100% and 95% efficiencies in color and COD re-
moval, respectively. They concluded that the hy-
brid EC process could be successfully applied to 
remove pollutants from effluents.

Electrocoagulation is commonly used for 
purifying wastewater. Metal cations are electro-
chemically dissolved locally through physical and 
chemical processes using an oxidized sacrificial 
anode (a metal electrode) (Ebba, 2021). This an-
ode dissolves to generate coagulant species that 
destabilize colloidal particles, forming flocs that, 
through a flotation process, rise to the surface, 
while another portion precipitates (Esfandyari et 
al., 2019; Aguilar et al., 2020). Iron and aluminum 
electrodes are the prevailing choices in EC due to 
their availability, non-toxicity, and established re-
liability (Moussa et al., 2017). Metal cations like 
Al3+ and Fe2+ are produced at the anode and thus 

do not need to be externally supplied. Concurrently, 
hydrogen gases are generated at the cathode, induc-
ing the flotation of contaminants (Holt et al., 2005). 
Recent research indicates that electrocoagulation is 
environmentally friendly and exhibits high efficien-
cy in contaminant removal (Nugroho et al., 2019). 
Likewise, it eliminates the need for chemical prod-
ucts (Koyuncu and Arıman, 2020), and the volume 
of sludge produced is reduced, compared with that 
generated through chemical treatment (Papadopou-
los et al., 2019). According to Dermentzis (2016), 
the anodic and cathodic reactions that occur in alu-
minum and iron electrodes are the following:

Anodic reaction for aluminum:
Al → Al3+ + 3e− (1)

Cathodic reaction for aluminum:
2H2O + 2e− → 2OH− + H2 (2)

General reaction:
2Al + 6H2O → 2Al(OH)3 + 3H2 (3)

Anodic reaction for iron:
Fe → Fe2+ + 2e− (4)

Cathodic reaction for iron:
2H2O + 2e− → 2OH− + H2 (5)

The use of magnetic technology holds prom-
ise as a wastewater treatment method: it enhances 
the separation of suspended particles (Johanet al., 
2004) and impacts the physicochemical properties 
of water, including light absorbance, pH, and sur-
face tension (Cho and Lee, 2005). The magnetic 
field has the capacity to modify the spin states of 
reactants and intermediates, influencing the struc-
ture of the formed molecules and the adsorption of 
intermediates on the electrode surface. As a result, 
it can change the kinetics and selectivity of elec-
trochemical reactions (Yasri et al., 2022; Garces-
Pineda et al., 2019). Furthermore, the magnetic 
field effect enhances the activity of chemicals and 
coagulation, facilitating the contact of suspended 
solids in water with the flocculant and thereby in-
creasing the flocculation rate (Guo et al., 2014).

Ozone (O3), known for its robust oxidation ca-
pabilities, is extensively used in water disinfection 
and the degradation of organic contaminants (Liu 
et al., 2021). In addition, advanced oxidation pro-
cesses based on ozone are effective and straight-
forward methods for treating refractory contami-
nants in wastewater without generating secondary 
waste (Joseph et al., 2021). An inherent property 
of ozone is its water solubility, which is 13 times 
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greater than that of oxygen. This characteristic has 
led to its widespread application in the degradation 
of several organic compounds (Malik et al., 2020).

Given the challenges posed by the tannery in-
dustry and leveraging current knowledge, this study 
aimed to assess the effectiveness of removing COD 
and TSS from tannery wastewater. This objective 
was pursued through the integration of electrocoag-
ulation, magnetic field, and ozonation technologies, 
employing a response surface methodology.

MATERIALS AND METHODS

Characteristics of tannery wastewater

The tannery wastewater was collected from 
the tanning and effluent treatment processes at the 
Leather and Footwear Technological Innovation 
Center and Related Industries (CITEccal). Table 1  
presents a subset of its monitored parameters, re-
vealing elevated conductivity values attributed to 
the salts used in the tanning processes, as well as 
high concentrations of COD and TSS.

Electrocoagulation, magnetic field,  
and ozonation reactor 

The testing reactor was designed in a batch 
configuration, measuring 16 cm in length, 16 cm 
in width, and 22 cm in height (Figure 1). Eight 
aluminum electrodes, each measuring 10 cm in 
width, 10 cm in length, and with an area of 100 
cm², were strategically placed to serve as both 

anodes and cathodes. To mitigate the high con-
ductivity of the effluent, a series arrangement of 
electrodes was adopted, maintaining a 2 cm gap 
between the electrodes to reduce the electrical 
current demand. A copper coil attached to the 
reactor generated the magnetic field, which was 
powered by an electrical current, to produce a 
magnetic field strength of 300 gauss.

The ozonizer incorporates a high-voltage 
control and regulating circuit (15 kV) that trig-
gers the corona effect, decomposing oxygen into 
ozone. Oxygen was introduced via an air pump 
to the ozone generator, which can produce ozone 
within the range of 0 to 10 g/h. Electrical current 
was provided by a power source that enables volt-
age adjustment between 0 and 24 volts, boasting a 
capacity of 50 A.

Table 1. Physicochemical effluent analysis
Parameter Value

Total suspended solids (mg/l) 1050

Chemical oxygen demand COD (mg/l) 3815

Biochemical oxygen demand BOD (mg/l) 823

Turbidity (mg/l) 1200

Total chromium 50.24

Chromium IV <0.005

Oils and Fats (mg/l) 39.8

pH 7.28

Conductivity (μS/cm) 16200

Fecal coliforms (MPN/100 ml) 4.5

Sulfurs (mg/l) 70.9

Ammonia nitrogen (mg/l) 445

Figure 1. Diagram of the electrocoagulation reactor with serial electrodes: (1) electrocoagulation cell, (2) power 
source, (3) ozone generator, (4) magnetic-field generator, (5) aluminum cathode, (6) aluminum anode, (7) sampler, 
and (8) wastewater from tannery
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Experimental procedure 

In the first stage, preliminary tests were con-
ducted using synthetic and real water to assess 
the effect of the variables considered in the ex-
perimental design. During the preliminary tests, a 
slight improvement in turbidity and TSS removal 
was observed when the magnetic field system 
was coupled with the electrocoagulation reactor. 
While varying the magnetic field intensity, no sig-
nificant improvements in turbidity removal were 
observed. Consequently, a consistent magnetic 
field strength of 300 gausses was adopted to fa-
cilitate the coagulation process. The experimental 
design was proposed using three current intensity 
values (3, 5, and 7 A). Under each of these condi-
tions, samples were taken at different times (10, 
20, and 30 min), and a specific ozone concentra-
tion (4, 7, and 10 g/h) was utilized. To measure 
pH, conductivity and temperature, an Oakton 
PCS 35 multiparameter was used. To quantify the 
COD and TSS, which are considered response 
variables, a portable DR900 Hach colorimeter 
was employed. The COD and TSS removal per-
centageswere determined by using Equation (6), 
as shown below:

𝑌𝑌𝑌𝑌𝑛𝑛𝑛𝑛 = %𝑅𝑅𝑅𝑅 = �
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

� × 100 (6)

where: %R – Removal percentage;   
Ci – Initial Concentration;   
Cf – Final Concentration.

Box-Behnken experimental design

The Response surface method (RSM) is the 
methodology used for developing optimization 
models and processes (Ravikumaret al., 2005). 
The treatment process was optimized based on 
the Box-Behnken design (BBD), which was de-
veloped as a RSM tool to achieve maximum TSS 
removal using regression coefficient values (R2), 
adjusted R2, and predicted R2. As depicted in 
Equation 7 below, the RSM methodology quanti-
tatively represents independent parameters.

y = f(x1, x2, x3, …, xn) ± ε (7)

where: y – the dependent variable (response pa-
rameter);      
f – the response function;   
ε – the experimental error;  
x1, x2, x3, …, xn – the independent pa-
rameters;      

To perform the statistical analysis, the 
Design Expert 11.1 software was used, 
which reported an ANOVA table at a 95% 
confidence level. The quality of fit of the 
polynomial model was expressed by the 
coefficient of determination R2yRadj. The 
experimental design was set up with four 
factors and three levels. The factors con-
sidered as independent variables were 
electric current intensity (x1), treatment 
time (x2), and ozone concentration (x3). 
In addition, the percentage of COD (y1) 
and TSS (y2) removal were defined as re-
sponse variables (Table 2).

RESULTS AND DISCUSSION

Results from the Box-Behnken design

The results of COD and TSS removal expressed 
as the response variable by EC were sorted accord-
ing to the design matrix, as shown in Table 3. BBD 

Table 2. Independent variable ranges and their levels

Factor Variables
Levels

-1 0 +1

x1 Current intensity (A) 3 5 7

x2 Time (min) 10 20 30

x3 Ozone (g/h) 4 7 10

Table 3. Quadratic regression model for COD and TSS 
removal

Exp. 
No

Factors Removal
COD (%)

Removal
TSS (%)

Current 
intensity 

(A)

Treatment
time
(min)

Ozone
(g/h)

Current 
value

Current 
value

x1 x2 x3 y1 y2

1 3 20 4 29 74
2 7 20 10 35 91
3 3 30 7 35 92
4 5 10 10 9 47
5 5 10 4 15 57
6 5 30 4 37 93
7 5 30 10 36 93
8 7 10 7 14 59
9 7 20 4 36 87

10 7 30 7 39 92
11 3 10 7 4 32
12 3 20 10 15 59
13 5 20 7 29 86
14 5 20 7 30 85
15 5 20 7 28 87
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included 13 experimental sets and two core experi-
ments. The statistical analysis was performed using 
Design Expert 11 software. Using multiple regres-
sion analysis, the COD (y1) and TSS (y2) remov-
al percentage response variableswere correlated 
against the three design factors (x1, x2, x3) using the 
second-order polynomial (Equation 7). Table 5 lists 
the quadratic regression model for COD (y1%) and 
TSS (y2%) removal in terms of coded factors.

In addition, an ANOVA yielded a 95% con-
fidence level, comparing the variation sources 

against Fisher’s distribution (F-test) to validate the 
viability of the regression model. In this study, the 
R2 value for COD and SST removal with alumi-
num electrodes is R2 = 0.9799 and R2 = 0.9894  
respectively, which demonstrates a good model 
adequacy, as shown in Tables 4 and 5.

Effect of current intensity 

Current intensity is the most important pa-
rameter in the electrocoagulation process, as it 

Table 4. ANOVA
Variation Source Sum of Squares DF MS F-test P-value

COD 
removal 

(%)

x1: Current Intensity (A) 210.13 1 210.13 28.20 0.0032

x2: Time (min) 1378.12 1 1378.12 148.98 < 0.0001

x3: Ozone (g/h) 60.50 1 60.50 8.12 0.0358

x1x2 9.00 1 9.00 1.21 0.3218

x1x3 42.25 1 42.25 5.67 0.0631

x2x3 6.25 1 6.25 0.8389 0.4017

x1
2 2.08 1 2.08 0.2788 0.6201

x2
2 101.77 1 101.71 13.66 0.0141

x3
2 0.9231 1 0.9231 0.1239 07392

Residual 37.25 5 7.45

Lack of fit 35.25 3 11.75 11.75 0.0794

Pure error 2.00 2 1.0000

Cor total 1848.93 14

R2 = 97.99%, Adj R2 = 94.36%

TSS 
removal 

(%)

x1: Current intensity (A) 648.00 1 648.00 56.10 0.0007

x2: Time (min) 3828.12 1 3828.12 331.44 < 0.0001

x3: Ozone (g/h) 55.13 1 55.13 4.77 0.0806

x1x2 128.25 1 128.25 15.78 0.0106

x1x3 90.25 1 90.25 7.81 0.0382

x2x3 25.00 1 25.00 2.16 0.2012

x1
2 132.92 1 132.92 11.51 0.0194

x2
2 467.31 1 467.31 40.46 0.0014

x3
2 18.69 1 18.69 1.62 0.2593

Residual 57.75 5 11.55

Lack of fit 55.75 3 18.58 18.58 0.0515

Pure error 2.00 2 1.0000

Cor total 5455.60 14

R2 = 98,94%, Adj R2 = 97,04%

Table 5. Statistical parameters obtained by RMS (%)

Answer
R2 Adj – R2 p

Quadratic response model based on least squares
(%) (%)

COD removal 
(%) 97.99 94.36 0.0001 y1 = –9.31944 + 2.14583x1 + 3.49583x2 – 5.23611x3 – 0.075x1x2 + 

+ 0.541667x1 x3 + 0.041667x2 x3 – 0.1875x1
2 – 0.0525x2

2 + 0.055556x3
2

TSS removal 
(%) 98.94 97.04 0.0001 y2 = –63.2500 + 20.70833x1 + 7.79167x2 – 3x3 – 0.3375x1x2 + 

+ 0.791667x1x3 + 0.08333x2x3 – 1.5x1
2 – 0.1125x2

2 – 0.25x3
2

Note: (COD, TSS removal, %); y1,y2 (Current intensity, A); x1 (Time, min); x2 (Ozone); x3.
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controls both coagulant dosing and reaction rates 
within the medium (Nasrullah, 2019). As the cur-
rent intensity increases, the number of coagulants 
(anodic aluminum dissolution) and the rate of 
bubble production rise, leading to an enhanced 
efficiency of coagulation and flotation of contam-
inants by the H2gas (Kobya et al., 2006). How-
ever, excessively high current intensities applied 
over extended periods decrease efficiency due to 
oxygen production and the passivation of alumi-
num electrodes (Piña et al., 2011). For this study, 
three current intensity levels (3, 5, and 7 A) were 
utilized. Figures 2 and 3 illustrate the relation-
ship between COD and TSS removal efficiency 
and the increase in current intensity. The findings 
demonstrate that elevating the current intensity 
from 3 to 7 A results in an efficiency increase of 
up to 39% for COD removal, while TSS removal 
reaches a high efficiency of 93%. Here, it is evi-
dent that values ≤3 A have not exhibited a sig-
nificant improvement in COD removal efficiency. 
The achieved COD removal results are compara-
tively lower than those reported by Barzegar et 
al. (2018), who documented 85% efficiency with 
an ozone concentration of 47.4 mg/l, and a cur-
rent density of 15 mA/cm2. In this study, the au-
thors also pointed out the substantial catalytic 
activity of iron electrodes for ozone activation, 
in contrast to that of aluminum electrodes. Like-
wise, Alcocer-Meneses et al. (2022), employing 
tannery effluents and combining electrocoagula-
tion with ozone, obtained similar values, thereby 
reporting a 33.2% COD removal efficiency. On 
a different note, Ahangarnokolaei et al. (2021) re-
ported a 70% COD removal efficiency in a hybrid 
electrocoagulation-ozone system with aluminum 
electrodes and 30-min duration. Another study 
conducted by Wagh and Nemade (2017) report-
ed higher efficiency values with ozone-assisted 
electrocoagulation, achieving efficiencies of 72% 
with a current density of 9.75 A cm−2.

Effect of treatment time

According to Faraday’s law, the electrolysis 
time in the electrocoagulation process affects the 
release rate of metal ions in the system (Malakoo-
tian et al., 2010). The length of electrolysis has a 
considerable impact on treatment effectiveness in 
electrochemical processes. The efficiencies of re-
moving COD and TSS were assessed after 10, 20, 
and 30 min of treatment. Metal ions (acting as co-
agulants) were generated from anode dissolution 

as current passes through the electrode (Bishwat-
ma et al., 2022). The concentration of Al3+ ions 
and their hydroxide precipitates increase with 
extended electrolysis time, resulting in improved 
TSS removal. In addition, identifying the opti-
mal duration for the electrocoagulation process 
is crucial to circumvent the needless consump-
tion of resources and energy (Shokri et al., 2022).  
As shown in Table 3 as well as Figures 2 and 3, 
the results from this parameter confirm that COD 
and TSS removal efficiencies increase over the 
course of the treatment time, particularly after 20 
min of treatment. Regarding COD, efficiencies of 
up to 35% are achieved, while that of TSS remov-
al exceeds 85%. These values differ from those 
reported by Aboulhassan et al. (2018), who docu-
mented 64% efficiency in COD removal. Con-
versely, the efficiencies of TSS removal are quite 
similar, reaching a value of 96%. Espinoza et al. 
(2009) and Varant et al. (2014) also reported high 
efficiencies, close to 75%, confirming the necessi-
ty of utilizing a tertiary system to degrade recalci-
trant organic matter. Furthermore, Barzegar et al. 
(2018) reported efficiencies exceeding 85% with 
60-min treatment duration. Nevertheless, in the 
electrocoagulation process, it is essential to iden-
tify the optimal treatment duration, as excessively 
prolonged periods can lead to elevated electrode 
and energy consumption (Can et al., 2006).

Effect of ozone concentration

The effect of ozone concentrations on COD 
and TSS removal was assessed at three levels: 4, 
7, and 10 mg/h. The degradation of ozone in wa-
ter follows a sequential mechanism involving ini-
tiation, propagation, and termination stages. De-
pending on the pH, molecular ozone and hydrox-
yl radicals generated during this process interact 
with a range of organic and inorganic compounds 
present in the effluent, serving as the primary driv-
ing force behind the oxidation process. Existing 
literature provides evidence that in aqueous solu-
tions, the prevailing oxidants are molecular ozone 
under acidic conditions and hydroxyl radicals un-
der alkaline conditions (Pranjal et al., 2021). Dur-
ing ozonation, the reduction in COD and BOD 
can be attributed to the oxidation of contaminants 
by ozone in the water. Ozonation pathways en-
compass both direct oxidation by ozone and radi-
cal oxidation by the OH radicals. Direct oxidation 
is more selective and prominent under acidic con-
ditions, whereas radical oxidation is less selective 
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and dominant under alkaline conditions (Pranjal 
et al., 2021; Mondal et al., 2018). Table 3 reveals 
that optimal removal efficiencies for COD, 35% 
and 39%, respectively, were achieved with ozone 
doses of 7 and 10 g/h. These results contrast with 

the findings reported by Ahangarnokolaei et al. 
(2021), who achieved 51% efficiency with a dose 
of 1.06 g/h. In addition, Barzegar et al. reported 
85% COD removal efficiency in graywater using 
an ozone dose of 47.4 mg/l and treatment duration 

Figure 2. Response surface plot (2a) and contour lines (2b) of the combined effect of 
current density, treatment time and ozone concentration on COD removal

Figure 3. Response surface plot (3a) and contour lines (3b) of the combined effect of 
current density, treatment time and ozone concentration on TSS removal
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of 60 min. Another noteworthy observation is that 
the concurrent application of EC and ozonation 
within the same reaction vessel induces increased 
turbulence in the reactor. This disruption affects 
the previously stabilized colloidal particles un-
dergoing sedimentation and flotation, thereby re-
ducingthe process efficiency. 

Optimization of total chromium 
removal electrocoagulation

The Box-Behnken RSM was utilized for nu-
merical optimization and to establish the optimal 
parameters that maximize the efficiency of re-
moving COD (y1) and TSS (y2). The impact of 
process variables is illustrated in Figures 2 and 3,  
which present three-dimensional (3D) and con-
tour (2D) response surface plots. In these graphs, 
which are based on the mathematical models de-
veloped in Equation 7, the variation of the COD 
and TSS removal percentages can be observed 
based on their factors of current intensity (x1), 
treatment time (x2) and ozone concentration 
(x3). The optimization model predicts that, for 
COD, the optimal conditions are obtained with 
values of I = 6.8 A, T = 30 min, and O3 = 10 mg/l, 
with an optimum removal of 41.72%. For TSS, an 
optimal removal of 97% is reached at I = 5.72 A, 
T = 28 min and O3= 7.8.

CONCLUSIONS

The results of this study have demonstrated 
the efficacy of an integrated system comprising 
electrocoagulation, magnetic field, and ozonation 
for the removal of COD and TSS from tannery 
wastewater. During initial tests, the combination 
of the magnetic field system and the electroco-
agulation reactor did not notably enhance TSS re-
moval as a coagulation aid. However, the results 
indicate that current intensity, treatment time, and 
ozone concentration played significant roles in 
the removal of COD and TSS. The R2 correlation 
coefficients for COD and TSS were 97.94% and 
98.94%, respectively, indicating a strong model 
fit. Optimal operating conditions for COD were 
found to be I = 6.8 A, T = 30 min, and O3 = 10 
mg/l. For TSS, the optimal conditions were I = 
5.72 A, T = 28 min, and O3 = 7.8 mg/l. Conse-
quently, under these conditions, optimal removal 
rates of 41.8% for COD and 97.9% for TSS were 
achieved. Furthermore, it can be concluded that 

the ozonation system must be used in a separate 
compartment to prevent the bubbling from ozone 
diffusers from interfering with the floc formation 
generated during the electrocoagulation process.
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